
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Corruption Networks Analysis using Matrices and

Eigenvalues

Alvin Christopher Santausa, 135230331

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523033@itb.ac.id, 2alvinchrisantausa@gmail.com

Abstract—Corruption is a massive issue, especially in

Indonesia, where it is happening in various sectors, including

government, business, and others. Corruption is done with

complex networks, where actors and their interactions form

patterns that can be analyzed mathematically using matrices

and eigenvalues. Actors as nodes and the interactions as edges

form a network that can be studied to retrieve information

about influential individuals, clusters of corrupt activity, and

the overall structure of corruption. This paper will apply

principles of linear and geometry algebra to model, analyze,

and interpret corruption networks, leveraging adjacency

matrices and eigenvalue analysis to identify components of

the corruption network.

Keywords—corruption, corruption networks, eigenvalue,

eigenvector, adjacency matrices, network analysis, centrality.

I. INTRODUCTION

Corruption is a serious worldwide issue that affects

many sectors, including government, economy, and

society. This act must be stopped as it only has a negative

effect and has no value offered. It usually involves illegal

activities that are often carried out through secret networks

of connections. It is essential to analyze the networks

formed by corrupt entities to understand the complex

networks better. These networks often exhibit intricate

structures that can be unraveled using mathematical tools

such as matrices and eigenvalues. Linear algebra,

particularly matrix factorization techniques, provides

powerful methods to represent and analyze relationships

within corruption networks, also revealing insights into

key players and their influence within the networks.

This paper will explore how matrix operations and

eigenvalues can be used to model and analyze corruption

networks. By using adjacency matrices, eigenvector

centrality, and spectral clustering concepts, hidden patterns

can be analyzed and uncovered within the corruption

networks. This approach will enable us to identify

influential nodes (persons), hidden subgroups, and

potential vulnerabilities in corrupt structures.

II. THEORETICAL FOUNDATIONS

A. Graph Representation of Networks

Graph is a pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a set that its

elements are called vertices and 𝐸 is a set of unordered

pairs {𝑣1, 𝑣2} of vertices (vertex), whose elements are

called edges (links or lines). It is used to model pairwise

relations are a fundamental representation of networks,

allowing for the modeling of relationships between entities

in a system.

In the case of corruption networks, the entities

(individuals, organizations, or government bodies) are

represented as nodes (vertices), while the interactions

between them (such as bribery, illegal exchanges, or

collusion) are represented as edges (links). Graphs can be

classified as either directed or undirected, with directed

graphs being particularly useful for representing an

asymmetric relationship, such as those seen in corruption.

A directed graph (digraph) is especially suited for

corruption analysis, where an edge from node 1 to node 2

indicates a flow or transaction (bribe or other) from entity

1 to entity 2. Such a graph can represent both direct and

indirect relationships, and its analysis will help to detect

the flow of corrupt practices, and the key players involved.

B. Matrix and Adjacency Matrix

Matrix is a rectangular array of numbers, symbols, or

expressions arranged in rows and columns. Matrices are

used to represent linear transformations, solve systems of

linear equations, and others. A matrix A with m rows and

n columns is denoted as:

𝐴 = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

… … … …
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

]

where 𝑎𝑖𝑗 represents the element in the ith row and jth

column.

Matrix can be also used to represent a finite graph using

an adjacency matrix. An 𝑛 × 𝑛 adjacency matrix is a square

matrix that represents a graph with 𝑛 vertices where:

𝐴𝑖𝑗 = {
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In the context of corruption analysis, the adjacency matrix

can represent the presence or absence of connections

mailto:113523033@itb.ac.id
mailto:2alvinchrisantausa@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

between individuals in the network. For weighted graphs,

where edges have different strengths or importance, the

entries can be non-binary values representing the weight of

the connections.

C. Eigenvalues and Eigenvectors

Eigen is a German word that means “own” or

“characteristic”. Eigen is used in linear algebra to describe

intrinsic properties of matrices and linear transformations.

In the context of matrices, an eigenvector 𝒙 is a nonzero

vector such that the action of a matrix 𝐴 on 𝒙 merely scales

𝒙, rather than changing its direction. This can be expressed

as:

𝐴𝒙 = 𝜆𝒙

Where:

• 𝜆 is the eigenvalue, a scalar representing the

scaling factor.

• 𝒗 is the eigenvector, which retains its direction

after the transformation by A

To determine eigenvalue (𝜆) and eigenvector (𝒙), the

characteristic equation is,

det(𝐴 − 𝜆𝐼) = 0

Where I is the identity matrix with the same size as A, and

det is determinant.

After solving the equation, get the eigenvalue and

substitute it to this equation to get the eigenvector

(𝐴 − 𝜆𝐼)𝑥 = 0

Eigen centrality is a concept derived from eigenvectors,

primarily used in network analysis. It measures the

importance of a node within a graph based on the principle

that connections to highly connected nodes contribute

more to a node’s centrality. The eigen centrality vector (𝒙)

with adjacency matrix A in graph satisfies

𝐴𝒙 = 𝜆𝑚𝑎𝑥𝒙

The 𝜆𝑚𝑎𝑥 is the largest eigenvalue (dominant eigenvalue /

principal eigenvalue) so that the 𝒙 is principal eigenvector

that represents the centrality scores. Eigenvector x is

usually normalized to ensure that the scores are scale-

invariant and comparable. In terms of corruption networks,

eigen centrality can be used to get information about key

actors, most influential actors, and network vulnerabilities.

III. IMPLEMENTATION

In this implementation, I will demonstrating the use of

eigenvalue and eigenmatrix at 2 cases

A. Simple corruption case

B. More complex corruption case

A. Simple corruption case

In this first case, I will demonstrate how to analyze a

simple corruption case that form a simple corruption

network (consists of 3 actors/nodes) (this is a dummy case).

Actor’s Name Code

Person 1 A

Person 2 B

Person 3 C

No Details

1 Person 1 (A) send illegal fund (IDR 2 billion) to

person 2 (B)

2 Person 1 (A) send illegal fund (IDR 1 billion) to

person 3 (C)

3 Person 2 (B) send illegal fund (IDR 500 million)

to person 1 (A)

4 Person 2 (B) send illegal fund (IDR 1 billion) to

person 3 (C)

5 Person 3 (C) send illegal fund (IDR 3 billion) to

person 2 (C)

Figure 1. Simple Corruption Network Graph

Source: https://github.com/Incheon21/AlgeoMakalah

Then can the adjacency matrix

𝐴 = [
0 2 1

0.5 0 1
0 3 0

]

*units in trillion

From the adjacency matrix, find eigenvalue to get the eigen

vector. First, calculate the eigenvalue using the formula

mentioned before

det(𝜆𝐼 − 𝐴) = 0

det(𝜆𝐼 − 𝐴) = det ([
𝜆 −2 −1

−0.5 𝜆 −1
0 −3 𝜆

])

= (𝜆). det ([
𝜆 −1

−3 𝜆
]) −

(−2). det ([
−0.5 −1

0 𝜆
]) +

(−1). det ([
−0.5 𝜆

0 −3
])

= 𝜆(𝜆2 − 3) + 2(−0.5𝜆) − (1.5)

https://github.com/Incheon21/AlgeoMakalah

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

= 𝜆3 − 3𝜆 − 𝜆 − 1.5

= 𝜆3 − 4𝜆 − 1.5 = 0

Using a calculator, the eigenvalues are

𝜆1 = 2.167, 𝜆2 = −0.389, 𝜆3 = −1.776

Then take the largest eigenvalue (principal eigenvalue)

𝜆1 = 2.677 and calculate the eigenvector by substitute 𝜆 =
2.677 into the equation (𝜆𝐼 − 𝐴)𝑥 = 0

(𝜆𝐼 − 𝐴) = [
2.167 −2 −1
−0.5 2.167 −1

0 −3 2.167
]

𝑥 = [

𝑥1

𝑥2

𝑥3

]

[
2.167 −2 −1
−0.5 2.167 −1

0 −3 2.167
] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0
]

From the equation, the x values can be found

{−

2.167𝑥1 − 2𝑥2 − 𝑥3 = 0
0.5𝑥1 + 2.167𝑥2 − 𝑥3 = 0

−3𝑥2 + 2.167𝑥3 = 0

From the third equation

𝑥2 =
2.167

3
𝑥3 ≈ 0.722𝑥3

Substitute 𝑥2 into the second equation

−0.5𝑥1 + 2.167(0.722𝑥3) − 𝑥3 = 0

−0.5𝑥1 + 0.565𝑥3 = 0

𝑥1 = −
0.5654

0.5
𝑥3 ≈ 1.129𝑥3

Let 𝑥3 = t, then:

𝑥 ≈ [
1.129𝑡
0.722𝑡

𝑡
] = 𝑡 [

1.129
0.722

1
]

After getting the eigenvector for the largest eigenvalue

(principal eigenvalue), then calculate the centrality scores

by normalizing the eigenvector.

‖𝑥‖ = √1.1292 + 0.7222 + 12

≈ √1.274 + 0.521 + 1 = √2.795 ≈ 1.671

𝑐 = −
𝑥

‖𝑥‖
≈

[

1.129

1.671
0.722

1.671
1

1.671]

≈ [
0.676
0.432
0.598

]

In the matrix c, each person’s centrality score is showed

from A to C with the highest score is for person A.

Person A: 0.676

Person B: 0.432

Person C: 0.598

The centrality scores indicate that person A is the most

influential individual within the corruption network,

followed by person C and person B. The influence is

formed by the number and importance of their connections,

as well as the fact that they are connected to other

influential individuals.

This result shows the use of eigenvector centrality for

uncovering the relative importance of individuals in a

corruption network. By identifying the key players (most

influential), anti-corruption party could focus their efforts

on individuals with the highest centrality because stopping

their activities could have the most significant impact so

the corruption can be stopped.

B. More complex case

For more complex case, I will use recent corruption case in

Indonesia for a study case. This case involved by many

parties including Harvey Moeis and Helena Lim as the

main suspect. But, because there is no valid and enough

data found, I use an assumption that recent corruption case

is happened like the table below (this is a dummy case).

Actor’s Name Code

Harvey Moeis H

Helena Lim L

Government Official 1 G1

Government Official 2 G2

Smelter 1 S1

Smelter 2 S2

Money Launderer Z

No Details

1 Harvey Moeis (H) bribed a Government Official

1 (G1) for project approval (IDR 100 trillion)

2 Harvey Moeis (H) sent money to Helena Lim (H)

to help him convinced the Government Official 1

(G1) (IDR 70 trillion)

3 Harvey Moeis (H) also sent money to each

Smelter 1 (S1) and Smelter 2 (S2) each IDR 10

trillion to make sure his plan runs smoothly

4 Helena Lim (L) also involved by providing funds

and connections to Government Official 1 (G1)

(IDR 50 trillion)

5 Government Official 1 (G1) transferred funds to

Government Official 2 (G2) for coordination

(IDR 40 trillion)

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

6 Government Official 2 (G2) transferred funds to

Smelter 1 (S1) for smelting operations (IDR 30

trillion)

7 Smelter 1 (S1) processed and transferred funds to

smelter 2 (S2) for coordination (IDR 10 trillion)

8 Smelter 1 (S1) and Smelter 2 (S2) sent funds to

launder (Z) for money laundering (IDR 20

trillion)

9 Launder (Z) transfered money to Harvey Moeis

(H) (IDR 273 trillion)

Figure 2. Complex Corruption Network Graph

Source: https://github.com/Incheon21/AlgeoMakalah

First, make the adjacency matrix from the action table and

it will form like this

𝐴 =

[

0 50 100 0 0 0 0
0 0 50 0 0 0 0
0 0 0 40 0 0 0
0 0 0 0 30 0 0
0 0 0 0 0 10 20
0 0 0 0 0 0 10

273 0 0 0 0 0 0]

From the adjacency matrix, the eigenvalue can be found to

get the eigen vector. But with this more complex case a

program will be used to find the eigenvalue, eigenvector,

and the eigen centrality score.

Normalize function to normalize the eigenvector

Solve_linear_system function to solve a linear system of

equations (𝐴 − 𝜆𝐼)𝑥 = 0 using Gaussian elimination

Solve_linear_system function to calculate eigenvectors

from a list of eigenvalues

• get_minor function to compute the minor matrix for

calculating determinant

• determinant function to calculate the determinant of a

matrix with recursion

• evaluate_characteristic_polynomial function to

evaluate the characteristic polynomial 𝑃(𝑥) =
𝑑𝑒𝑡(𝐴 − 𝜆𝐼)

• derivative_characteristic function to estimate the

derivative of the characteristic polynomial

def normalize(vector):

 squared_sum = sum(x*x for x in vector)

 magnitude = squared_sum ** 0.5

 if magnitude == 0:

 return vector

 return [x/magnitude for x in vector]

def solve_linear_system(matrix, precision=1e-

10):

 n = len(matrix)

 augmented = [row[:] + [0] for row in

matrix]

 # Forward elimination

 for i in range(n):

 pivot = augmented[i][i]

 if abs(pivot) < precision:

 for j in range(i+1, n):

 if abs(augmented[j][i]) > precision:

 augmented[i], augmented[j] =

augmented[j], augmented[i]

 pivot = augmented[i][i]

 break

 if abs(pivot) < precision:

 continue

 for j in range(i+1, n):

 factor = augmented[j][i] / pivot

 for k in range(i, n+1):

 augmented[j][k] -= factor *

augmented[i][k]

 # Back substitution

 solution = [1.0] * n

 for i in range(n-1, -1, -1):

 s = sum(augmented[i][j] * solution[j] for

j in range(i+1, n))

 if abs(augmented[i][i]) > precision:

 solution[i] = -s / augmented[i][i]

 return normalize(solution)

def find_eigenvectors(matrix, eigenvalues,

precision=1e-10):

 """Find eigenvectors for each

eigenvalue."""

 n = len(matrix)

 eigenvectors = []

 for eigenval in eigenvalues:

 # Construct matrix A - λI

 shifted_matrix = [

 [matrix[i][j] - (eigenval if i == j

else 0)

 for j in range(n)]

 for i in range(n)

]

 eigenvector =

solve_linear_system(shifted_matrix,

precision)

 eigenvectors.append(eigenvector)

 return eigenvectors

def get_minor(matrix, i, j):

 """Get the minor matrix by removing row i

and column j."""

 return [[matrix[row][col] for col in

range(len(matrix)) if col != j]

 for row in range(len(matrix)) if

row != i]

def determinant(matrix):

https://github.com/Incheon21/AlgeoMakalah

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Is_duplicate_eigenvalue function to check if an eigenvalue

is already computed

Solve_eigenvalues function to find eigenvalues of the

matris using Newton’s method

• generate_initial_guesses function to generate initial

guesses for eigenvalues (to accelerate the

computation)

• verify_eigenvalues function to verify the accuracy of

computed eigenvalue and eigenvector

 """Calculate determinant recursively using

cofactor expansion."""

 if len(matrix) == 1:

 return matrix[0][0]

 if len(matrix) == 2:

 return matrix[0][0]*matrix[1][1] -

matrix[0][1]*matrix[1][0]

 det = 0

 for j in range(len(matrix)):

 cofactor = (-1) ** j * matrix[0][j] *

determinant(get_minor(matrix, 0, j))

 det += cofactor

 return det

def

evaluate_characteristic_polynomial(matrix,

x):

 """Evaluate characteristic polynomial at x

for any size matrix."""

 n = len(matrix)

 # Create matrix A - xI

 shifted = [[matrix[i][j] - (x if i == j

else 0) for j in range(n)] for i in range(n)]

 return determinant(shifted)

def

derivative_characteristic_polynomial(matrix,

x, h=1e-7):

 """Numerical derivative of characteristic

polynomial."""

 return

(evaluate_characteristic_polynomial(matrix, x

+ h) -

 evaluate_characteristic_polynomial(

matrix, x)) / h

def is_duplicate_eigenvalue(value,

eigenvalues, tolerance=1e-6):

 """Check if an eigenvalue is already in the

list within tolerance."""

 return any(abs(value - ev) < tolerance for

ev in eigenvalues)

def solve_eigenvalues(matrix,

initial_guesses, max_iter=100, tolerance=1e-

10):

 """Find eigenvalues using Newton's method

with duplicate checking."""

 eigenvalues = []

 n = len(matrix)

 for guess in initial_guesses:

 x = guess

 converged = False

 for _ in range(max_iter):

 fx =

evaluate_characteristic_polynomial(matrix, x)

 if abs(fx) < tolerance:

 converged = True

 break

 dfx =

derivative_characteristic_polynomial(matrix,

x)

 if abs(dfx) < tolerance:

 break

 x_new = x - fx/dfx

 if abs(x_new - x) < tolerance:

 converged = True

 break

 `

 x = x_new

 if converged and not

is_duplicate_eigenvalue(x, eigenvalues):

 eigenvalues.append(x)

 if len(eigenvalues) == n: # Found all

eigenvalues

 break

 return eigenvalues

def generate_initial_guesses(matrix):

 n = len(matrix)

 """Generate better initial guesses for

eigenvalues."""

 guesses = []

 # Add diagonal elements

 for i in range(n):

 guesses.append(matrix[i][i])

 # Add Gershgorin disk centers and radii

 for i in range(n):

 radius = sum(abs(matrix[i][j]) for j in

range(n) if i != j)

 guesses.append(matrix[i][i] + radius)

 guesses.append(matrix[i][i] - radius)

 # Add trace/n as it's the average of

eigenvalues

 trace = sum(matrix[i][i] for i in range(n))

 guesses.append(trace / n)

 # Remove duplicates and sort

 return sorted(list(set(guesses)))

def verify_eigenvalues(matrix, eigenvalues,

eigenvectors, tolerance=1e-8):

 """Verify that computed eigenvalues and

eigenvectors are correct."""

 results = []

 n = len(matrix)

 for eigenval, eigenvec in zip(eigenvalues,

eigenvectors):

 # Calculate Ax

 Ax = [sum(matrix[i][j] * eigenvec[j] for

j in range(n)) for i in range(n)]

 # Calculate λx

 lx = [eigenval * x for x in eigenvec]

 # Check if Ax = λx

 error = sum((Ax[i] - lx[i])**2 for i in

range(n))**0.5

 results.append({

 'eigenvalue': eigenval,

 'eigenvector': eigenvec,

 'error': error,

 'valid': error < tolerance

 })

 return results

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Main program to calculate the adjacency matrix

The calculation done by program is

Figure 1. Calculation Program Result

Source: https://github.com/Incheon21/AlgeoMakalah

The biggest eigenvalue is 68.05 and the eigenvector is

𝑥 =

[

0.2265
0.0544
0.0741
0.1262
0.2863
0.1334
0.9081]

That eigenvector is also the centrality scores of the

adjacency matrix because that is a principal eigenvector

and is already normalized The centrality score showed that

Money Launderer (Z) or node 7 has the biggest centrality

score so it means that it is the most influential individual.

Though H or L might be seen as a dominant individual

because they initiate and start the corruption, the Money

Launderer (Z) has the biggest centrality score. This

suggests that targeting the Money Launderer (Z) could give

the greatest impact in disrupting the corruption network.

This also indicates the network’s resilience hinges on the

operational efficiency of the launderer.

By findings focusing on the individual with high

centrality scores, anti-corruption efforts can become more

systematic and data-driven and result in more effective

interventions and better outcomes.

IV. SOME COMMON MISTAKES

The analysis on corruption networks using mathematical

approaches may result in different or inaccurate

conclusions because of several common mistakes that

occur in the process of analysis. The data representation

has to be complete data so there is no missing

actions/transactions/actors that may lead to an incomplete

adjacency matrix that affects the accuracy of eigenvalue

and centrality calculations.

Treating all connections as equally important can

oversimplify the network. That is why weighted graph is

used in the implementation as it reflects the magnitude or

significance of transactions to ensure a more realistic

analysis.

Improper normalization and misunderstanding the

meaning of eigenvector centrality or other metrices can

also lead to misguided conclusions.

By addressing these common mistakes, the findings on

the analysis can be robust and insightful for stopping

corruption networks.

V. CONCLUSION

This study demonstrates the application of linear

algebra, particularly matrix eigenvalue, and eigenvector

analysis, in covering patterns and key actors within

corruption networks. By using and analyzing adjacency

matrices, the centrality score of nodes can be determined

and it helps to identify the influential individuals and

critical connections.

In the implementation part, the simple corruption case

showed that eigenvector centrality successfully highlighted

the primary role of Person A, proofing the method’s

effectiveness in identifying dominant actors in small

networks. In the more complex case, the analysis identified

the Money Launderer (Z) as the most influential individual,

A = [

 [0, 70, 100, 0, 10, 10, 0],

 [0, 0, 50, 0, 0, 0, 0],

 [0, 0, 0, 40, 0, 0, 0],

 [0, 0, 0, 0, 30, 0, 0],

 [0, 0, 0, 0, 0, 10, 20],

 [0, 0, 0, 0, 0, 0, 10],

 [273, 0, 0, 0, 0, 0, 0]

]

"""Solve for eigenvalues and eigenvectors of

a matrix of any size."""

n = len(A)

initial_guesses = generate_initial_guesses(A)

eigenvalues = solve_eigenvalues(A,

initial_guesses)

Ensure we have exactly n eigenvalues

if len(eigenvalues) < n:

 print(f"Warning: Found only

{len(eigenvalues)} eigenvalues out of {n}

expected")

eigenvectors = find_eigenvectors(A,

eigenvalues)

verification = verify_eigenvalues(A,

eigenvalues, eigenvectors)

print("\nMatrix:")

for row in A:

 print([f"{x:8.4f}" for x in row])

print("\nResults:")

for result in verification:

 if result['valid']:

 print(f"\nEigenvalue:

{result['eigenvalue']:8.4f}")

 print("Eigenvector:", [f"{x:8.4f}" for x

in result['eigenvector']])

 print(f"Error: {result['error']:e}")

 else:

 print(f"\nWarning: Invalid

eigenvalue/eigenvector pair (error:

{result['error']:e})")

 print("Eigenvalue:",

result['eigenvalue'])

 print("Eigenvector:",

result['eigenvector'])

https://github.com/Incheon21/AlgeoMakalah

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

emphasizing the necessity of targeting such actors to

disrupt a big systemic corruption.

These findings emphasize that mathematical tools can

provide a structured and objective approach to analyzing

corruption networks. It offers insights that can guide anti-

corruption party to ensure the interventions are focused on

the most impactful person (node). Future work and deeper

analysis could explore extending these methods to dynamic

or evolving networks, integrating time-based analysis to

track changes in network structures over time. By using

these techniques, authorities and researchers can work

together to address corruption systematically, paving the

way for more transparent and clean systems.

VI. APPENDIX

1. Github Repository:

https://github.com/Incheon21/AlgeoMakalah

VII. ACKNOWLEDGMENT

The author expresses heartfelt gratitude to Almighty

God for the blessings and guidance during the writing of

this paper. Special thanks are extended to Ir. Rila Mandala,

M.Eng., Ph.D., for the role as lecturer in the IF2123 Linear

and Geometry Algebra course and to Dr. Ir. Rinaldi Munir,

M.T., for making the lecture materials available on the

course website, which supported the research process. The

author also wishes to acknowledge the unwavering support

from family and friends that were invaluable in completing

this paper.

REFERENCES

[1] Munir, Rinaldi. 2023. “Nilai Eigen dan Vektor Eigen (Bagian 1)”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20

23-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-

2023.pdf [Accessed: Jan, 2, 2025]

[2] Balakrishnan, V. K. (1997). Graph Theory (1st ed.). McGraw-

Hill. ISBN 978-0-07-005489-9 [Accessed: Jan, 1, 2025]
[3] Jiang, Y. (2022). Study on eigenvalue and eigenvector

introduction. Journal of Physics Conference Series, 2282(1),

012004. https://doi.org/10.1088/1742-6596/2282/1/012004
[Accessed: Jan, 1, 2025]

[4] Paul Minogue. (n.d.). https://paulminogue.com/posts/8cdb1f03-

f215-4060-908f-d21d403bf9e5 [Accessed: Jan, 1, 2025]

STATEMENT OF ORGINALITY

I hereby declare that this paper I have written is my own

work, not an adaptation or translation of someone else's

paper, and not plagiarism..

Bandung, 2nd Desember 2024

Alvin Christopher Santausa

13523033

https://github.com/Incheon21/AlgeoMakalah
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-005489-9
https://doi.org/10.1088/1742-6596/2282/1/012004
https://paulminogue.com/posts/8cdb1f03-f215-4060-908f-d21d403bf9e5
https://paulminogue.com/posts/8cdb1f03-f215-4060-908f-d21d403bf9e5

