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Abstract—Corruption is a massive issue, especially in 

Indonesia, where it is happening in various sectors, including 

government, business, and others. Corruption is done with 

complex networks, where actors and their interactions form 

patterns that can be analyzed mathematically using matrices 

and eigenvalues. Actors as nodes and the interactions as edges 

form a network that can be studied to retrieve information 

about influential individuals, clusters of corrupt activity, and 

the overall structure of corruption. This paper will apply 

principles of linear and geometry algebra to model, analyze, 

and interpret corruption networks, leveraging adjacency 

matrices and eigenvalue analysis to identify components of 

the corruption network. 
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I.   INTRODUCTION 

Corruption is a serious worldwide issue that affects 

many sectors, including government, economy, and 

society. This act must be stopped as it only has a negative 

effect and has no value offered. It usually involves illegal 

activities that are often carried out through secret networks 

of connections.  It is essential to analyze the networks 

formed by corrupt entities to understand the complex 

networks better. These networks often exhibit intricate 

structures that can be unraveled using mathematical tools 

such as matrices and eigenvalues. Linear algebra, 

particularly matrix factorization techniques, provides 

powerful methods to represent and analyze relationships 

within corruption networks, also revealing insights into 

key players and their influence within the networks. 

This paper will explore how matrix operations and 

eigenvalues can be used to model and analyze corruption 

networks. By using adjacency matrices, eigenvector 

centrality, and spectral clustering concepts, hidden patterns 

can be analyzed and uncovered within the corruption 

networks. This approach will enable us to identify 

influential nodes (persons), hidden subgroups, and 

potential vulnerabilities in corrupt structures. 

 

II. THEORETICAL FOUNDATIONS 

A. Graph Representation of Networks 

Graph is a pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a set that its 

elements are called vertices and 𝐸 is a set of unordered 

pairs {𝑣1, 𝑣2} of vertices (vertex), whose elements are 

called edges (links or lines). It is used to model pairwise 

relations are a fundamental representation of networks, 

allowing for the modeling of relationships between entities 

in a system.  

In the case of corruption networks, the entities 

(individuals, organizations, or government bodies) are 

represented as nodes (vertices), while the interactions 

between them (such as bribery, illegal exchanges, or 

collusion) are represented as edges (links). Graphs can be 

classified as either directed or undirected, with directed 

graphs being particularly useful for representing an 

asymmetric relationship, such as those seen in corruption. 

A directed graph (digraph) is especially suited for 

corruption analysis, where an edge from node 1 to node 2 

indicates a flow or transaction (bribe or other) from entity 

1 to entity 2. Such a graph can represent both direct and 

indirect relationships, and its analysis will help to detect 

the flow of corrupt practices, and the key players involved. 

 

B. Matrix and Adjacency Matrix 

Matrix is a rectangular array of numbers, symbols, or 

expressions arranged in rows and columns. Matrices are 

used to represent linear transformations, solve systems of 

linear equations, and others. A matrix A with m rows and 

n columns is denoted as: 

 

𝐴 = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

… … … …
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

] 

where 𝑎𝑖𝑗  represents the element in the ith row and jth 

column. 

Matrix can be also used to represent a finite graph using 

an adjacency matrix. An 𝑛 × 𝑛 adjacency matrix is a square 

matrix that represents a graph with 𝑛 vertices where: 

 

𝐴𝑖𝑗 = {
1  𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

In the context of corruption analysis, the adjacency matrix 

can represent the presence or absence of connections 
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between individuals in the network. For weighted graphs, 

where edges have different strengths or importance, the 

entries can be non-binary values representing the weight of 

the connections. 

 

C. Eigenvalues and Eigenvectors 

Eigen is a German word that means “own” or 

“characteristic”. Eigen is used in linear algebra to describe 

intrinsic properties of matrices and linear transformations. 

In the context of matrices, an eigenvector 𝒙 is a nonzero 

vector such that the action of a matrix 𝐴 on 𝒙 merely scales 

𝒙, rather than changing its direction. This can be expressed 

as: 

 

𝐴𝒙 = 𝜆𝒙 

 

Where: 

• 𝜆 is the eigenvalue, a scalar representing the 

scaling factor. 

• 𝒗 is the eigenvector, which retains its direction 

after the transformation by A 

 

To determine eigenvalue (𝜆) and eigenvector (𝒙), the 

characteristic equation is, 

 

det(𝐴 − 𝜆𝐼) = 0 

 

Where I is the identity matrix with the same size as A, and 

det is determinant. 

 

After solving the equation, get the eigenvalue and 

substitute it to this equation to get the eigenvector 

 

(𝐴 − 𝜆𝐼)𝑥 = 0 

 

Eigen centrality is a concept derived from eigenvectors, 

primarily used in network analysis. It measures the 

importance of a node within a graph based on the principle 

that connections to highly connected nodes contribute 

more to a node’s centrality. The eigen centrality vector (𝒙) 

with adjacency matrix A in graph satisfies 

 

𝐴𝒙 = 𝜆𝑚𝑎𝑥𝒙 

 

The 𝜆𝑚𝑎𝑥  is the largest eigenvalue (dominant eigenvalue / 

principal eigenvalue) so that the 𝒙 is principal eigenvector 

that represents the centrality scores. Eigenvector x is 

usually normalized to ensure that the scores are scale-

invariant and comparable. In terms of corruption networks, 

eigen centrality can be used to get information about key 

actors, most influential actors, and network vulnerabilities. 

 

 

III.   IMPLEMENTATION 

In this implementation, I will demonstrating the use of 

eigenvalue and eigenmatrix at 2 cases 

A. Simple corruption case 

B. More complex corruption case 

 

A. Simple corruption case 

In this first case, I will demonstrate how to analyze a 

simple corruption case that form a simple corruption 

network (consists of 3 actors/nodes) (this is a dummy case). 

 

Actor’s Name Code 

Person 1 A 

Person 2 B 

Person 3 C 

 

No Details 

1 Person 1 (A) send illegal fund (IDR 2 billion) to 

person 2 (B) 

2 Person 1 (A) send illegal fund (IDR 1 billion) to 

person 3 (C) 

3 Person 2 (B) send illegal fund (IDR 500 million) 

to person 1 (A) 

4 Person 2 (B) send illegal fund (IDR 1 billion) to 

person 3 (C) 

5 Person 3 (C) send illegal fund (IDR 3 billion) to 

person 2 (C) 

 

 
Figure 1. Simple Corruption Network Graph 

Source: https://github.com/Incheon21/AlgeoMakalah  

 

 

Then can the adjacency matrix  

 

𝐴 =  [
0 2 1

0.5 0 1
0 3 0

] 

*units in trillion 

 

From the adjacency matrix, find eigenvalue to get the eigen 

vector. First, calculate the eigenvalue using the formula 

mentioned before 

 

det(𝜆𝐼 − 𝐴) = 0 

 

det(𝜆𝐼 − 𝐴) = det ([
𝜆 −2 −1

−0.5 𝜆 −1
0 −3 𝜆

]) 

 

= (𝜆). det ([
𝜆 −1

−3 𝜆
]) −

(−2). det ([
−0.5 −1

0 𝜆
]) +

(−1). det ([
−0.5 𝜆

0 −3
]) 

 

= 𝜆(𝜆2 − 3) + 2(−0.5𝜆) − (1.5) 
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= 𝜆3 − 3𝜆 − 𝜆 − 1.5 

 

= 𝜆3 − 4𝜆 − 1.5 = 0 

 

Using a calculator, the eigenvalues are 

𝜆1 = 2.167,  𝜆2 = −0.389, 𝜆3 = −1.776 

 

Then take the largest eigenvalue (principal eigenvalue) 

𝜆1 = 2.677 and calculate the eigenvector by substitute 𝜆 =
2.677 into the equation (𝜆𝐼 − 𝐴)𝑥 = 0 

 

(𝜆𝐼 − 𝐴) =  [
2.167 −2 −1
−0.5 2.167 −1

0 −3 2.167
] 

 

𝑥 = [

𝑥1

𝑥2

𝑥3

] 

 

[
2.167 −2 −1
−0.5 2.167 −1

0 −3 2.167
] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0
] 

 

From the equation, the x values can be found 

 

{−

2.167𝑥1 − 2𝑥2 − 𝑥3 = 0
0.5𝑥1 + 2.167𝑥2 − 𝑥3 = 0

−3𝑥2 + 2.167𝑥3 = 0
 

 

From the third equation 

 

𝑥2 =
2.167

3
𝑥3 ≈ 0.722𝑥3 

 

Substitute 𝑥2 into the second equation 

 

−0.5𝑥1 + 2.167(0.722𝑥3) − 𝑥3 = 0 

 

−0.5𝑥1 + 0.565𝑥3 = 0 

 

𝑥1 = −
0.5654

0.5
𝑥3 ≈ 1.129𝑥3 

 

Let 𝑥3 = t, then: 

 

𝑥 ≈ [
1.129𝑡
0.722𝑡

𝑡
] = 𝑡 [

1.129
0.722

1
] 

 

After getting the eigenvector for the largest eigenvalue 

(principal eigenvalue), then calculate the centrality scores 

by normalizing the eigenvector. 

 

‖𝑥‖ =  √1.1292 + 0.7222 + 12 

 

≈ √1.274 + 0.521 + 1 = √2.795 ≈ 1.671 

 

𝑐 = −
𝑥

‖𝑥‖
≈

[
 
 
 
 
 
1.129

1.671
0.722

1.671
1

1.671]
 
 
 
 
 

≈ [
0.676
0.432
0.598

] 

 

In the matrix c, each person’s centrality score is showed 

from A to C with the highest score is for person A. 

 

Person A: 0.676 

Person B: 0.432 

Person C: 0.598 

 

The centrality scores indicate that person A is the most 

influential individual within the corruption network, 

followed by person C and person B. The influence is 

formed by the number and importance of their connections, 

as well as the fact that they are connected to other 

influential individuals. 

This result shows the use of eigenvector centrality for 

uncovering the relative importance of individuals in a 

corruption network. By identifying the key players (most 

influential), anti-corruption party could focus their efforts 

on individuals with the highest centrality because stopping 

their activities could have the most significant impact so 

the corruption can be stopped. 

 

B. More complex case 

For more complex case, I will use recent corruption case in 

Indonesia for a study case. This case involved by many 

parties including Harvey Moeis and Helena Lim as the 

main suspect. But, because there is no valid and enough 

data found, I use an assumption that recent corruption case 

is happened like the table below (this is a dummy case). 

 

Actor’s Name Code 

Harvey Moeis H 

Helena Lim L 

Government Official 1 G1 

Government Official 2 G2 

Smelter 1 S1 

Smelter 2 S2 

Money Launderer Z 

 

No Details 

1 Harvey Moeis (H) bribed a Government Official 

1 (G1) for project approval (IDR 100 trillion) 

2 Harvey Moeis (H) sent money to Helena Lim (H) 

to help him convinced the Government Official 1 

(G1) (IDR 70 trillion) 

3 Harvey Moeis (H) also sent money to each 

Smelter 1 (S1) and Smelter 2 (S2) each IDR 10 

trillion to make sure his plan runs smoothly 

4 Helena Lim (L) also involved by providing funds 

and connections to Government Official 1 (G1) 

(IDR 50 trillion) 

5 Government Official 1 (G1) transferred funds to 

Government Official 2 (G2) for coordination 

(IDR 40 trillion) 
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6 Government Official 2 (G2) transferred funds to 

Smelter 1 (S1) for smelting operations (IDR 30 

trillion) 

7 Smelter 1 (S1) processed and transferred funds to 

smelter 2 (S2) for coordination (IDR 10 trillion) 

8 Smelter 1 (S1) and Smelter 2 (S2) sent funds to 

launder (Z) for money laundering (IDR 20 

trillion) 

9 Launder (Z) transfered money to Harvey Moeis 

(H) (IDR 273 trillion) 

 

 
Figure 2. Complex Corruption Network Graph 

Source: https://github.com/Incheon21/AlgeoMakalah  

 

First, make the adjacency matrix from the action table and 

it will form like this 

 

𝐴 =  

[
 
 
 
 
 
 

0 50 100 0 0 0 0
0 0 50 0 0 0 0
0 0 0 40 0 0 0
0 0 0 0 30 0 0
0 0 0 0 0 10 20
0 0 0 0 0 0 10

273 0 0 0 0 0 0 ]
 
 
 
 
 
 

 

 

From the adjacency matrix, the eigenvalue can be found to 

get the eigen vector. But with this more complex case a 

program will be used to find the eigenvalue, eigenvector, 

and the eigen centrality score.  

 

Normalize function to normalize the eigenvector 

 
 

Solve_linear_system function to solve a linear system of 

equations (𝐴 − 𝜆𝐼)𝑥 = 0 using Gaussian elimination 

 

 
 

Solve_linear_system function to calculate eigenvectors 

from a list of eigenvalues 

 
 

• get_minor function to compute the minor matrix for 

calculating determinant 

• determinant function to calculate the determinant of a 

matrix with recursion 

• evaluate_characteristic_polynomial function to 

evaluate the characteristic polynomial 𝑃(𝑥) =
𝑑𝑒𝑡(𝐴 − 𝜆𝐼) 

• derivative_characteristic function to estimate the 

derivative of the characteristic polynomial 

 

def normalize(vector): 

  squared_sum = sum(x*x for x in vector) 

  magnitude = squared_sum ** 0.5 

   

  if magnitude == 0: 

    return vector 

  return [x/magnitude for x in vector] 

def solve_linear_system(matrix, precision=1e-

10): 

  n = len(matrix) 

  augmented = [row[:] + [0] for row in 

matrix] 

   

  # Forward elimination 

  for i in range(n): 

    pivot = augmented[i][i] 

    if abs(pivot) < precision: 

      for j in range(i+1, n): 

        if abs(augmented[j][i]) > precision: 

          augmented[i], augmented[j] = 

augmented[j], augmented[i] 

          pivot = augmented[i][i] 

          break 

 

    if abs(pivot) < precision: 

      continue 

 

    for j in range(i+1, n): 

      factor = augmented[j][i] / pivot 

      for k in range(i, n+1): 

        augmented[j][k] -= factor * 

augmented[i][k] 

   

  # Back substitution 

  solution = [1.0] * n 

  for i in range(n-1, -1, -1): 

    s = sum(augmented[i][j] * solution[j] for 

j in range(i+1, n)) 

    if abs(augmented[i][i]) > precision: 

      solution[i] = -s / augmented[i][i] 

   

  return normalize(solution) 

 

def find_eigenvectors(matrix, eigenvalues, 

precision=1e-10): 

  """Find eigenvectors for each 

eigenvalue.""" 

  n = len(matrix) 

  eigenvectors = [] 

   

  for eigenval in eigenvalues: 

    # Construct matrix A - λI 

    shifted_matrix = [ 

      [matrix[i][j] - (eigenval if i == j 

else 0)  

      for j in range(n)] 

      for i in range(n) 

    ] 

    eigenvector = 

solve_linear_system(shifted_matrix, 

precision) 

    eigenvectors.append(eigenvector) 

   

  return eigenvectors 

def get_minor(matrix, i, j): 

  """Get the minor matrix by removing row i 

and column j.""" 

  return [[matrix[row][col] for col in 

range(len(matrix)) if col != j] 

          for row in range(len(matrix)) if 

row != i] 

 

def determinant(matrix): 
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Is_duplicate_eigenvalue function to check if an eigenvalue 

is already computed 

 
 

Solve_eigenvalues function to find eigenvalues of the 

matris using Newton’s method 

 

 
 

• generate_initial_guesses function to generate initial 

guesses for eigenvalues (to accelerate the 

computation) 

• verify_eigenvalues function to verify the accuracy of 

computed eigenvalue and eigenvector 

  """Calculate determinant recursively using 

cofactor expansion.""" 

  if len(matrix) == 1: 

    return matrix[0][0] 

  if len(matrix) == 2: 

    return matrix[0][0]*matrix[1][1] - 

matrix[0][1]*matrix[1][0] 

   

  det = 0 

  for j in range(len(matrix)): 

    cofactor = (-1) ** j * matrix[0][j] * 

determinant(get_minor(matrix, 0, j)) 

    det += cofactor 

  return det 

 

def 

evaluate_characteristic_polynomial(matrix, 

x): 

  """Evaluate characteristic polynomial at x 

for any size matrix.""" 

  n = len(matrix) 

  # Create matrix A - xI 

  shifted = [[matrix[i][j] - (x if i == j 

else 0) for j in range(n)] for i in range(n)] 

  return determinant(shifted) 

 

def 

derivative_characteristic_polynomial(matrix, 

x, h=1e-7): 

  """Numerical derivative of characteristic 

polynomial.""" 

  return 

(evaluate_characteristic_polynomial(matrix, x 

+ h) -  

          evaluate_characteristic_polynomial(

matrix, x)) / h 

 

def is_duplicate_eigenvalue(value, 

eigenvalues, tolerance=1e-6): 

  """Check if an eigenvalue is already in the 

list within tolerance.""" 

  return any(abs(value - ev) < tolerance for 

ev in eigenvalues) 

def solve_eigenvalues(matrix, 

initial_guesses, max_iter=100, tolerance=1e-

10): 

  """Find eigenvalues using Newton's method 

with duplicate checking.""" 

  eigenvalues = [] 

  n = len(matrix) 

     

  for guess in initial_guesses: 

    x = guess 

    converged = False 

     

    for _ in range(max_iter): 

      fx = 

evaluate_characteristic_polynomial(matrix, x) 

      if abs(fx) < tolerance: 

        converged = True 

        break 

           

      dfx = 

derivative_characteristic_polynomial(matrix, 

x) 

      if abs(dfx) < tolerance: 

        break 

           

      x_new = x - fx/dfx 

      if abs(x_new - x) < tolerance: 

        converged = True 

        break 

          ` 

      x = x_new 

     

    if converged and not 

is_duplicate_eigenvalue(x, eigenvalues): 

      eigenvalues.append(x) 

      if len(eigenvalues) == n:  # Found all 

eigenvalues 

        break 

   

  return eigenvalues 

 

def generate_initial_guesses(matrix): 

  n = len(matrix) 

  """Generate better initial guesses for 

eigenvalues.""" 

  guesses = [] 

   

  # Add diagonal elements 

  for i in range(n): 

    guesses.append(matrix[i][i]) 

   

  # Add Gershgorin disk centers and radii 

  for i in range(n): 

    radius = sum(abs(matrix[i][j]) for j in 

range(n) if i != j) 

    guesses.append(matrix[i][i] + radius) 

    guesses.append(matrix[i][i] - radius) 

   

  # Add trace/n as it's the average of 

eigenvalues 

  trace = sum(matrix[i][i] for i in range(n)) 

  guesses.append(trace / n) 

   

  # Remove duplicates and sort 

  return sorted(list(set(guesses))) 

 

def verify_eigenvalues(matrix, eigenvalues, 

eigenvectors, tolerance=1e-8): 

  """Verify that computed eigenvalues and 

eigenvectors are correct.""" 

  results = [] 

  n = len(matrix) 

  for eigenval, eigenvec in zip(eigenvalues, 

eigenvectors): 

    # Calculate Ax 

    Ax = [sum(matrix[i][j] * eigenvec[j] for 

j in range(n)) for i in range(n)] 

    # Calculate λx 

    lx = [eigenval * x for x in eigenvec] 

    # Check if Ax = λx 

    error = sum((Ax[i] - lx[i])**2 for i in 

range(n))**0.5 

    results.append({ 

      'eigenvalue': eigenval, 

      'eigenvector': eigenvec, 

      'error': error, 

      'valid': error < tolerance 

    }) 

  return results 
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Main program to calculate the adjacency matrix 

 
 

The calculation done by program is 

 
Figure 1. Calculation Program Result 

Source: https://github.com/Incheon21/AlgeoMakalah  

 

The biggest eigenvalue is 68.05 and the eigenvector is 

 

𝑥 =

[
 
 
 
 
 
 
0.2265
0.0544
0.0741
0.1262
0.2863
0.1334
0.9081]

 
 
 
 
 
 

 

 

That eigenvector is also the centrality scores of the 

adjacency matrix because that is a principal eigenvector 

and is already normalized The centrality score showed that 

Money Launderer (Z) or node 7 has the biggest centrality 

score so it means that it is the most influential individual. 

Though H or L might be seen as a dominant individual 

because they initiate and start the corruption, the Money 

Launderer (Z) has the biggest centrality score. This 

suggests that targeting the Money Launderer (Z) could give 

the greatest impact in disrupting the corruption network. 

This also indicates the network’s resilience hinges on the 

operational efficiency of the launderer. 

By findings focusing on the individual with high 

centrality scores, anti-corruption efforts can become more 

systematic and data-driven and result in more effective 

interventions and better outcomes. 

 

IV.   SOME COMMON MISTAKES 

The analysis on corruption networks using mathematical 

approaches may result in different or inaccurate 

conclusions because of several common mistakes that 

occur in the process of analysis. The data representation 

has to be complete data so there is no missing 

actions/transactions/actors that may lead to an incomplete 

adjacency matrix that affects the accuracy of eigenvalue 

and centrality calculations. 

Treating all connections as equally important can 

oversimplify the network. That is why weighted graph is 

used in the implementation as it reflects the magnitude or 

significance of transactions to ensure a more realistic 

analysis. 

Improper normalization and misunderstanding the 

meaning of eigenvector centrality or other metrices can 

also lead to misguided conclusions. 

By addressing these common mistakes, the findings on 

the analysis can be robust and insightful for stopping 

corruption networks. 

 

V.   CONCLUSION 

This study demonstrates the application of linear 

algebra, particularly matrix eigenvalue, and eigenvector 

analysis, in covering patterns and key actors within 

corruption networks. By using and analyzing adjacency 

matrices, the centrality score of nodes can be determined 

and it helps to identify the influential individuals and 

critical connections. 

In the implementation part, the simple corruption case 

showed that eigenvector centrality successfully highlighted 

the primary role of Person A, proofing the method’s 

effectiveness in identifying dominant actors in small 

networks. In the more complex case, the analysis identified 

the Money Launderer (Z) as the most influential individual, 

A = [ 

  [0, 70, 100, 0, 10, 10, 0], 

  [0, 0, 50, 0, 0, 0, 0], 

  [0, 0, 0, 40, 0, 0, 0], 

  [0, 0, 0, 0, 30, 0, 0], 

  [0, 0, 0, 0, 0, 10, 20], 

  [0, 0, 0, 0, 0, 0, 10], 

  [273, 0, 0, 0, 0, 0, 0]  

] 

 

"""Solve for eigenvalues and eigenvectors of 

a matrix of any size.""" 

n = len(A) 

initial_guesses = generate_initial_guesses(A) 

eigenvalues = solve_eigenvalues(A, 

initial_guesses) 

 

# Ensure we have exactly n eigenvalues 

if len(eigenvalues) < n: 

  print(f"Warning: Found only 

{len(eigenvalues)} eigenvalues out of {n} 

expected") 

 

eigenvectors = find_eigenvectors(A, 

eigenvalues) 

verification = verify_eigenvalues(A, 

eigenvalues, eigenvectors) 

 

print("\nMatrix:") 

for row in A: 

  print([f"{x:8.4f}" for x in row]) 

 

print("\nResults:") 

for result in verification: 

  if result['valid']: 

    print(f"\nEigenvalue: 

{result['eigenvalue']:8.4f}") 

    print("Eigenvector:", [f"{x:8.4f}" for x 

in result['eigenvector']]) 

    print(f"Error: {result['error']:e}") 

  else: 

    print(f"\nWarning: Invalid 

eigenvalue/eigenvector pair (error: 

{result['error']:e})") 

    print("Eigenvalue:", 

result['eigenvalue']) 

    print("Eigenvector:", 

result['eigenvector']) 
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emphasizing the necessity of targeting such actors to 

disrupt a big systemic corruption. 

These findings emphasize that mathematical tools can 

provide a structured and objective approach to analyzing 

corruption networks. It offers insights that can guide anti-

corruption party to ensure the interventions are focused on 

the most impactful person (node). Future work and deeper 

analysis could explore extending these methods to dynamic 

or evolving networks, integrating time-based analysis to 

track changes in network structures over time. By using 

these techniques, authorities and researchers can work 

together to address corruption systematically, paving the 

way for more transparent and clean systems. 

 

VI.   APPENDIX 

1. Github Repository: 

https://github.com/Incheon21/AlgeoMakalah  
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